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A potential function/stream function formulation is introduced for the solution of the 
fully 3-D inverse potential ‘target pressure’ problem. In the companion paper (Part 1) 
it is seen that the general 3-D inverse problem is ill-posed but accepts as a particular 
solution elementary streamtubes with orthogonal cross-section. Under this simpli- 
fication, a novel set of flow equations was derived and discussed. The purpose of the 
present paper is to present the computational techniques used for the numerical 
integration of the flow and geometry equations proposed in Part 1. The governing flow 
equations are discretized with centred finite difference schemes on a staggered grid and 
solved in their linearized form using the preconditioned GMRES algorithm. The 
geometry equations which form a set of first-order 0.d.e.s are integrated numerically 
using a second-order-accurate space marching scheme. The resulting computational 
algorithm is applied to a double turning duct and a 3-D converging-diverging nozzle 
‘reproduction’ test case. 

1. Introduction 
In the companion paper, Part 1 (Chaviaropoulos, Dedoussis & Papailiou 1995), a 

‘ single-pass ’ inverse potential method for the solution of the three-dimensional (3-D) 
‘target pressure’ problem has been developed. Similar to the approach proposed by 
Stanitz (1980, 1985), a potential function $ and two stream functions q k , ~  are 
introduced as the ‘natural ’ coordinates. A body-fitted coordinate transformation is 
employed to map the physical (x, y ,  z)-space on which the boundaries of the flow field 
are unknown onto the natural ($,qk,~)-space. The governing flow equations are 
derived using the metrics compatibility conditions of the 3-D Euclidean (flat) space. A 
novel closed set of three partial differential equations (p.d.e.s) is, thus, derived in terms 
of the velocity magnitude V,  and the aspect ratio t and the skew angle 8 of the 
elementary streamtube cross-section. Because of the nature of the governing V-t-8 
equations, the 3-D inverse problem with velocity (pressure)-only boundary conditions 
does not have a unique solution. The problem, however, accepts as a particular 
solution elementary streamtubes with orthogonal cross-sections. In this case, the 
governing flow equations simplify to an elliptic-type p.d.e. for the velocity magnitude 
and to a second-order 0.d.e. for the streamtube aspect ratio. The solution of these two 
equations provides the flow field in a ‘single-pass’ manner without requiring any 
feedback from the geometry. The geometry is determined in a subsequent step by 
integrating Frenet equations along the natural coordinates lines. 
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The purpose of this paper, Part 2 of the study, is to present the numerical 
implementation of the 3-D inverse design method developed in Part 1. The governing 
flow equations are discretized on the (q5, @, 7)-space using centred finite differencing. A 
staggered V-t computational stencil is employed in order to enhance the accuracy of 
the discretization in the near-boundary regions. The resulting discrete system of 
equations is linearized to form a Newton iteration step. The explicit Jacobian inversion 
in the Newton step is avoided by employing a fast iterative linear system solver, based 
on the preconditioned restarting GMRES(m) algorithm (Saad & Schultz 1983). An 
incomplete L-U preconditioner, resulting from the MSIP approximate factorization 
scheme (Zedan & Schneider 1983), premultiplies the velocity block of the Jacobian 
matrix, while tridiagonal preconditioning is applied to the t-block of the Jacobian 
matrix. 

Once the flow field has been determined, the geometry is calculated by integrating 
Frenet equations along the (4, @, q)-coordinate lines. Frenet equations form coupled 
systems of 0.d.e.s expressing the variation of the covariant base (g,,g,,g,) and the 
position vector r along the natural coordinates lines. In order to enhance the accuracy 
of the discretization, a staggered computational stencil is also employed. A 
Crank-Nicholson-type second-order-accurate space marching scheme is used for the 
numerical integration of the discrete equations. 

The method is validated in the last part of the paper for two channel flow 
'reproduction' test cases, concerning a double turning converging duct and an axial 
3-D converging-diverging nozzle. 

2. Governing equations 
Assuming that the flow is steady inviscid and irrotational and that the fluid is a 

perfect gas, the velocity field may be expressed as the gradient of a potential function 
q5, and the flux field as the cross-product of two stream function (@, 7) gradients (Yih 
1957). Thus 

v =  vq5, (1) 
p V = V @ x V q .  (2) 

The density field is related to the velocity magnitude through the energy conservation 
equation for isentropic changes as 

In the above equations the velocity V is normalized with a reference value V, and the 
density p with the corresponding pm value. M ,  is the Mach number at the reference 
point and y is the ratio of specific heats cp/c,. 

2.1. Flow equations 
Considering the coordinate transformation of the physical (x, y ,  z)-space onto the 
natural (4, @, q) one, the governing equations of the inverse problem are derived from 
the metrics compatibility (zero-curvature) conditions on the natural space. Under the 
assumption of orthogonal streamtubes the velocity and streamtube aspect ratio (Part 
1) dependent variables satisfy the following p.d.e.s in the natural coordinates space : 

velocity ( V )  equation 

(In ">$$ + (In PI$$ + (Pt/ V )  (In V@@ + ( p / t  V )  (In Q7 + #ln 0; - (In 0; - (In P)$I 
- ( P t /  V )  (In V)@[(ln V>$ - (In 0@1 - ( p / t V )  (In V,[(ln "I?) + (In t),] = 0; (4) 
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aspect ratio (t) equation 

(In f)@@ - (In p)&ln t)$$ + (pt/ V )  [(ln V)$$ + (In v)$,(ln PI,] 

- (p/t V )  [(In v,, + (In V>,(ln P>,I = 0, ( 5 )  

where subscripts $, $, q indicate corresponding partial derivatives. The above set of 
equations supplemented by the density equation (3) form a closed set of p.d.e.s for the 
dependent flow variables, i.e. the velocity magnitude V,  the streamtube aspect ratio t 
and the density p. 

As it is pointed out in Part 1, in subsonic flows and for a given t-field, (4) represents 
an elliptic quasi-linear p.d.e. for (In V ) ,  requiring boundary conditions all around the 
integration domain. In the context of the present work, where internal configurations 
are considered, velocity is specified (Dirichlet-type conditions) on the limiting lateral 
stream surfaces (walls), either as V =  V($,$)I,=const or V =  V($,q)~~,=,,,,, and on 
the inlet and outlet sections, which are assumed to be potential surfaces, as 
V = V($, 7) I+=const. On the solid walls potential $ is related to streamline arclength s 
via the relation d$ = Vds. It is obvious, therefore, that V = V(q5, $) for 
instance, could be considered as V = V(s, $) The designer usually specifies the 
distribution V = V(s) rather than V = V(q5). 

For a given V-field, t-equation ( 5 )  is a second-order, 0.d.e. for (lnt) in the $-wise 
sense. Considering the t-equation as a boundary value problem, boundary conditions 
are required both on the inlet and outlet sections. Dirichlet-type boundary conditions 
are imposed on the inlet section, the actual value depending on the $--y discretization 
(e.g. t = 1 for A$ = Aq). Assuming that the flow on the outlet section is ‘non- 
evolving’, i.e. fully developed, a zero Neumann boundary condition is specified there. 

The way the boundary conditions for both V and t are implemented implicitly 
assumes that an H-type partitioning for the ($, 7)-plane, i.e. cross-sections, has been 
employed. According to the discussion presented in Part 1, the H-type partitioning in 
conjunction with the assumption of orthogonal streamtubes, restrict the application of 
the method to the design of geometries with orthogonally edged lateral boundaries. It 
has been pointed out, however, that a possible more flexible 0-type partitioning would 
require additional boundary conditions along the singular streamline. For simplicity 
H-type partitioning has been adopted in this work. 

In contrast to the 2-D case, the 3-D set of flow equations (4) and ( 5 )  is strongly 
nonlinear even for the simplest case, the incompressible one. In that respect, the present 
3-D formulation cannot be considered as a straightforward extension of the 2-D 
theory. However, the very important similarity is that in both the 2-D and 3-D 
formulations the flow field can be determined without any feedback from the geometry 
sought. The present potential function/stream function inverse approach represents, 
therefore, a fast, ‘ single-pass ’, design method. 

2.2. Geometry equations 
Having determined the flow field in the ($,$,q)-space, the relevant geometry is 
computed by integrating the Frenet equations along the coordinate lines of the natural 
space. The Frenet equations which govern the variation of the covariant base and, 
consequently, the position vector I along the $ = const., @ = const. and q = const. 
lines form a coupled system of 0.d.e.s. In compact tensor notation this system reads 

% = r i g ,  with i , j ,k= 1,2,3, 
au3 
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where 

As has been pointed out in Part 1, the Christoffel symbols T.. are expressed analytically 
in terms of the partial derivatives of the flow field quantities, V, t and p. 

Equation (6) represents a 3 x 3 system of scalar 0.d.e.s along the natural coordinate 
direction ui for each of the Cartesian components of the covariant base (g l ,g2 ,g3) .  
Once the covariant base components become available, the integration of (7) provides 
the Cartesian coordinates of the geometry. To integrate (6) and (7), the orthogonal 
covariant base and the position vector should be arbitrarily specified at a reference 
point, say the centroid of the inlet section. 

3. Numerical integration of flow equations 
The objective of this section is to discuss in detail the discretization, the linearization 

and the iterative solver employed for the numerical integration of the system of flow 
equations (4) and (5) .  

3.1. Discretization 
Here (In V )  and (In t) are considered to be the dependent computational variables. First- 
and second-order partial derivatives are discretized using second-order-accurate 
central differencing on a uniform (4, $, v)-grid. Derivatives of (lnp) are directly related 
to the (In V )  derivatives through (3). 

On the cross-flow plane the discretization of the equations has been effected on a 
staggered grid: t-nodes are off-set with respect to the V- and p-nodes, which are 
considered to be the actual grid nodes, by half a cell distance, both in the $- and 7- 
directions. Namely, if I ,  J and K indices are associated with the grid nodes in the $-, 
9- and 7-directions respectively, then V and p are stored at ( I ,  J, K )  locations, whilst 
t is stored at (I, J+& K+i) locations (see figure 1). 

The advantage of this staggering is twofold. From the numerical point of view, the 
first-order cross-flow derivatives of (In V )  and (In t) are tightly coupled. At mid-cell 
locations, (In V )  and (In t) cross-flow derivatives are approximated assuming linear 
variation within the cells. For example 

+(In V I ,  J + l ,  K - (In 0, J ,  K1. (8) 
This implies that there is no need for one-sided differencing on the boundary cells for 
the discretization of (In V)@ and (In V)? contained in the t-equation ( 5 ) .  The required 
mid-cells values, K, J+;, K+; for the t-equation and tI, J ,  for the V-equation (4) are 
approximated assuming linear variation of (In V )  and (In t) in the corresponding cell. 
The definition of t as the elementary streamtube aspect ratio, on the other hand, 
requires t to be stored at the centroid of the streamtube cross-section. In that respect, 
the adopted staggering practice is also physically sound. 

The central differencing for the V-equation limits the present approach to subsonic 
flows only, where the equation is elliptic. In the case of transonic flow, upwind 
differencing in the streamwise $-direction should be used. 

3.2. Linearization 
The V- and t-equations are highly nonlinear and have different mathematical 
characters. It has been decided, therefore, to solve them in a coupled iterative mode. A 
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FIGURE 1. Staggered computational stencil for the flow field and geometry calculations. 

Newton procedure, where nonlinear terms are expanded in the iteration space using 
Taylor series, is employed to linearize the discrete system of equations. This 
linearization procedure results to the following iteration : 

where superscript n denotes the iteration level and R is the residual vector of the Vand 
t-system of equations. 

In writing the linearization relation (9), the dependence of the governing equation on 
p is not shown explicitly. This is because p is frozen during the (V,  t )  iteration (a 
practice which is very common in subsonic flow computations). The density field is 
updated after (V,  t)n+l have been determined, using the algebraic equation (3). 

3.3.  Solution algorithm 

The solution of the discrete block system of (9) is carried out using an iterative 
technique based on a preconditioned gradient method. Preconditioning is essential 
since matrix (BRIi3X) is stiff. The most obvious choice for the preconditioning matrix 
P is 

P - El-'. 
Indicating the dependence of (aRIi3X) on the unknowns V and t this Jacobian matrix 
can be expressed in terms of corresponding submatrices as 

i3R L, L, 
, . x = [ L 3  LJ 

Neglecting the effect of submatrix L,, a preconditioning matrix may be obtained in the 
form : 
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where P, N Ly1, P, N L i l ,  P, N - L,'L, L;' N - P4 L, P,. (14) 
In its discrete form P, is derived by an incomplete L-U decomposition of L ,  using 

the MSIP technique (Zedan & Schneider 1983). P, is approximated by 

P, = [A+ L,] ]  

Operator P4 is related to the inversion of a tridiagonal matrix since L,, which expresses 
the dependence of the t-equation on (In t), is a one-dimensional three-point discrete 
operator. The pseudo-time term (//A7) serves as a relaxation parameter, while its 
positive sign contributes to the diagonal dominance of the tridiagonal matrix. 
Appropriate values of A7 have been determined via computational experimentation. 

The preconditioned form of the Newton step, i.e. (9) premultiplied by the P matrix, 
is solved with the linear, restarting GMRES (m) algorithm (Saad & Schultz 1983), 
which has been proved to be very effective in a wide variety of CFD problems 
(Giannakoglou, Chaviaropoulos & Papailiou 1988). 

4. Numerical integration of geometry equations 
The calculation of the geometry which exhibits the prescribed flow properties is the 

objective of an inverse method. In that sense the numerical schemes which are used for 
the integration of the geometry equations should be very accurate. Compared to the 
inner-flow region the calculation of the lateral boundaries is more demanding, because 
the required flow information is not completely available there. This effect is more 
pronounced on the edges (intersections of the limiting stream surfaces of different 
family) where the @ and 7 surface derivatives are discontinuous. To circumvent this 
difficulty staggered grid techniques have been employed. Details of the discretization 
and integration procedure of the geometry equations are discussed in this section. 

4.1. Discretization 
The covariant base (g,,g,,g,) is computed on the actual grid nodes ( I ,  J, K )  which are 
V- and p-nodes. Depending on the direction of the integration of (6), the corresponding 
Christoffel symbols appearing in its right-hand side are stored at different locations. 
Noting that the Christoffel symbols are expressed in terms of the first-order derivatives 
of the flow quantities (V,  t,p), the staggering to be adopted should be such that the 
discrete form of these derivatives use inner-grid information, avoiding as much as 
possible variables extrapolation. Thus, the r& Christoffel symbols, which are associated 
with the streamwise #-direction of the covariant base integration, are calculated at 
(I+& J, K )  locations. Accordingly, the rk and r& symbols, associated with the @- and 
?-integrations respectively, are calculated at (I, J+i, K )  and (I ,  J, K+i)  locations 
respectively (see figure 1). It is noted that the assumptions adopted for the variation of 
the flow variables in the grid cells are also used in the actual evaluation of the rt 
symbols. 

4.2. Solution algorithm 
The numerical integration of the geometry equations (6) and (7) is performed in two 
steps. First, the covariant base gi is determined applying an implicit second-order- 
accurate Crank-Nikolson scheme along the natural coordinates. Along the streamwise 
coordinate, for instance, the discrete form of (6) reads 
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or, dropping the cross-plane indices 

Gz+1- Gz = aA$A,z+pz+, + Gz3, (17) 

g1, g l Y  g 1 z  r:1 r;1 r;1 

g3x g3, g 3 z  Gl Gl Gl 
where G =[;;I =[g2.; g 2 ,  and A, = [Til Gl rill, (18) 

with x, y ,  z indices indicating the corresponding Cartesian components. Quantities 
appearing in (16) and (17) are compatible with the discretization strategy presented in 
the previous subsection. Assuming that GI is known, GI+, is provided through 

GZ,, = {/-aAylA~,+?-l{I+~AylA,I+:) Gz, (19) 

with / being the 3 x 3 identity matrix. Equations similar to (19) hold for the $ and 7 
integrations. 

To determine the covariant base distribution on the complete grid, (19) is first 
applied to the centreline. The integration of (19) starts from the inlet section on which 
the orientation of the orthogonal covariant base is arbitrarily specified, its size being 
controlled by the corresponding metrics which in turn are expressions of the V and t 
boundary distributions. On each cross-flow plane, i.e. potential ($ = const.) surface, G 
is determined via a combination of $- and 7-integrations. Starting from the calculated 
covariant base on the central grid node (centreline distribution), two $-integrations (in 
the positive and negative sense) are carried out in order to determine the G-distribution 
along the central 7-family grid line. This latter distribution provides the initial 
conditions for the 7-integrations which are carried out along all $-family grid lines. 
Obviously, the order of $- and 7-integrations performed for the calculation of the G- 
distribution on the cross-flow plane may be interchanged. An averaging practice has 
been adopted in this work. In duct flow applications the above directional integration 
scheme was found to be the most effective in terms of minimal error accumulation. 

Having calculated the G-field, the geometry is determined by straightforward 
second-order-accurate numerical integrations of (7) along the ($, $, v)-grid following 
a similar directional integration strategy. On the cross-flow plane ($ = const. surfaces) 
for instance, the $- and 7-integrations read respectively 

(20) 

(21) 

In accordance with the scheme used for the covariant base calculation, the sought 
geometry at (I, J, K)  locations, i.e. the position vector rI, J ,  K ,  is finally obtained with 
straightforward averaging. 

The magnitude of the covariant base vectors is directly related to the metrics (note 
that gi-gi = (gJ = gii, repeated indices are not summed here). The metrics, on the 
other hand, are expressed in terms of the flow quantities V, t and p.  It is evident that 
the covariant base vectors, calculated via the numerical integration of the geometry 
equations (6) and (7) should be compatible with (the already known) corresponding 
metrics. Stanitz (1985) found it necessary to incorporate a magnitude correction within 
the geometry calculation procedure, so as to ensure compatibility between the 
geometry and the flow field (a direction correction for the base vectors was also 
incorporated). The velocity equation, that Stanitz (1980, 1985) used, has coefficients 
which are explicit functions of geometric parameters. It seems that corrections are 
necessary to minimize possible adverse (nonlinear) feedback of geometry errors, within 

r Z ,  J+1 ,  K = r Z ,  J ,  K + A$&21,J+l, K +g2z, J ,  

rI, J , K + i  = rI, J ,  K + A7 ’{ g31, J ,  K+1 +g3,,J, K” 
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the overall calculation procedure. In our method and for the design test cases 
attempted it was not necessary to cater for any geometry correction technique. 
Perhaps, this is due to the principal characteristic of the proposed 3-D inverse method 
that the flow and geometry calculation procedures are decoupled, i.e. they are entirely 
independent. 

5. Results and discussion 
The method has been validated for two channel-flow ‘reproduction’ test cases. In the 

first case a direct full-potential code is employed in order to provide the flow field in 
a double turning converging duct. The computed boundary velocity distributions form 
the input data for the inverse solver which is called upon to reproduce the original 
geometry. The opposite procedure is followed in the second test case where an axial 
3-D converging-diverging nozzle is designed. In this case, the inverse solver provides a 
geometry compatible with a prescribed ‘target pressure’ and the direct solver is called 
upon to produce the prescribed boundary velocity (pressure) distribution. These 
‘reproduction’ cases form a hard test for the accuracy of both the inverse and direct 
solvers since the numerical errors tend to accumulate within the two-step validation 
procedure. 

5.1. Double turning duct test case 
This case concerns the reproduction of a 3-D subsonic, double turning converging 
duct. The geometry of the duct, which is shown in figure 2(a), has been defined 
analytically (Workshop on Selected Inverse and Optimum Design Problems, organized 
by Brite Euram Project 1082 partners, June 1992). Inlet Mach number is set to 0.2, 
leading to a high subsonic exit Mach number of the order of 0.75. 

A full-potential 3-D solver (Chaviaropoulos, Giannakoglou 8z Papailiou 1988) is 
employed to obtain the flow field and the velocity distribution on the lateral walls of 
the duct. The wall (as well as the inlet and outlet) velocity distributions calculated by 
the direct solver are used as input by the 3-D inverse method in order to reproduce the 
geometry of the duct. The 3-D inverse solver, however, requires the velocity 
distributions along the boundary (limiting) streamlines which, in general, do not 
coincide with the boundary grid lines of the direct solver. One has, therefore, to 
translate the flow field calculated by the direct code to a form which can be 
comprehended by the inverse method. For this purpose a post-processor has been 
developed, which performs the following tasks : 

(i) Assuming that streamsurfaces (i.e. $ = const., 7 = const. lines) are uniformly 
distributed at the inlet plane, a streamline computation is carried out. The procedure 
is based on the integration of the following transport equations: 

V * V $  = 0, V-VV = 0, (22) 

where V is the velocity (vector) field calculated by the direct solver. Boundary 
conditions for $ and 7 are required on the inlet plane only. The numerical integration 
of these two transport-type equations is performed employing an upwind approximate 
factorization scheme (Rao, Steger & Pletcher 1987) using the values of the potential $ 
and stream functions ?,k,v at the grid nodes of the original geometry. 

(ii) Respecting the limiting values of the $, $, 7 independent variables a uniform 
rectangular computational grid is generated on the ($, $, 7)-space. 

(iii) The velocity magnitude is then determined on the grid nodes of the 
computational ($, $, q)-space (which do not coincide with the original geometry grid 
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FIGURE 2. Perspective views of (a) the original and (b) the reproduced double turning duct. 

nodes). A second-order-accurate interpolation procedure, using Taylor series ex- 
pansion, is used for this purpose. 

Clearly, one expects that the numerical errors accumulated in this interpolation 
procedure affect to some extent the accuracy of the ‘reproduction’. To minimize the 
numerical errors involved, a relatively fine (30 x 15 x 15) computational grid was used 
in the direct computation. 

A 43 x 15 x 15 unifom grid was generated on the (4, $, 7)-space. The computational 
cost associated with the inverse problem solution is of the order of 650 CPU s in one 
processor of an Alliant FX 80 computer. A representative view of the original and 
reproduced duct geometries is presented in figures 2(a) and 2(b) respectively, while 
projections of the corresponding centrelines on the (x, z)- and (y ,  z)-planes are 
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FIGURE 3. Projections of the centreline of the original (----) and the reproduced (-) double 
turning duct on (a) the (x, 2)- and (b) on the ( y ,  2)-plane. 

compared in figures 3(a) and 3(b). It should be noted that the centreline of the 
reproduced geometry is not a direct output of the inverse method. Its geometry is 
determined by averaging the calculated Cartesian coordinates of the four streamline 
edges. This practice is acceptable since the duct under discussion has square cross- 
section. The satisfactory comparisons of both the centreline and the lateral wall 
geometries indicate the accuracy of the proposed 3-D inverse method. Inevitably, some 
discrepancies are introduced by the interpolations and the different discretization 
schemes which are used in the direct and inverse solvers. Small discrepancies of the 
geometry near the edges of the duct are due to the singular behaviour of the 
corresponding streamlines. 

Mach number distributions calculated with the inverse and direct solvers along the 
centreline of the duct are compared in figure 4. As the flow proceeds downstream, the 
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FIGURE 4. Mach number distributions along the centreline of the double turning duct: -, 
inverse solution; ----, direct solution, original geometry. 
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FIGURE 5. Mach number contours of inverse (-) and direct (----) method on sections normal 
to the centreline of the double turning duct at (a) s = &,,,,, (b) s = h,,, and (c) s = $s,,,. 

Mach number is increasing, which is expected since the duct is converging. The 
agreement between direct and inverse calculation distributions is very good. It is 
believed that the small discrepancies observed near the exit region are partly due to the 
error accumulation of the geometry integrations and partly due to the inappropriate 
non-evolving zero Neumann boundary condition for t (actually the direct calculation 
indicates that the flow is evolving near the exit). Inverse and direct solver Mach number 
contours (solid and dashed lines respectively) on three cross-sections normal to the 
centreline at the locations s = ~ s m u x ,  +sm,, and $smux, s being the centreline arclength, 
are presented in figure 5 .  In spite of the fact that a 3-D interpolation procedure was 
used to produce these contours the reproduction is quite accurate. 

5.2. Axial converging-diverging nozzle test case 
The present inverse method has been applied to design an axial 3-D converging- 
diverging nozzle with prescribed (target) boundary velocity distribution. The 
prescribed velocity distribution, which is the same along all the wall streamlines, is 
presented in figure 6 .  The non-constant part of this distribution is described by a 
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0 0.2 0.4 0.6 0.8 1 .o 
M m a x  

FIGURE 6. Target wall velocity distribution for the axial 3-D converging-diverging 
nozzle test case. 

FIGURE 7. Perspective view of the calculated axial 3-D converging-diverging nozzle. 

sinusoidal function with linearly increasing amplitude. Uniform inlet and outlet 
velocity distributions are specified. The inlet Mach number is set to 0.15. 

It may be argued that this test case is a simple one since uniform, in the cross-flow 
sense, wall boundary conditions correspond to axisymmetric (geometry) solution. It 
should be realized, however, that such a (axisymmetric) solution is explicitly forbidden 
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FIGURE 8. Potential lines of inverse (-) and direct (----) method for two adjacent walls of the 
axial 3-D converging-diverging nozzle case (+,,, = 1, A+ = 2). 

since (a) the boundary conditions refer to both $ = const. and 7 = const. family walls 
and (b) a square-sectioned inlet is assumed. This test case is definitely a hard test for 
the present inverse method. 

Inverse calculation was carried out on a 5 1 x 11 x 1 1 grid with A# = 1, A@ = 1 and 
AT = 1. A perspective view of the calculated nozzle, defined by the lateral-walls grid, 
is shown in figure 7. In the regions near the inlet and outlet, the nozzle has almost 
square cross-section. As the nozzle starts to converge, the wall surfaces become curved 
in a concave (outwards) manner. It seems that the flow solution tries to impose a ‘near- 
axisymmetric’ geometry, which (as was pointed out) is implied by the uniform, in the 
cross-flow sense, velocity boundary condition. In the throat region the walls of the 
nozzle are also curved, exhibiting however the opposite sense of curvature, i.e. concave 
inwards. As the flow approaches the exit it relaxes leading to a square cross-section. 
This is due not only to the uniform lateral and exit boundary conditions but also to the 
zero Neumann boundary condition for t. 

The direct full-potential 3-D solver (Chaviaropoulos et al. 1988) employed for the 
reproduction procedure is applied using the grid produced by the inverse calculation. 
Inverse and direct solver results (solid and dashed lines respectively) for the potential 
function on two adjacent walls of the nozzle are compared in figure 8. The symmetry 
is very good and the agreement is quite satisfactory. The discrepancies observed near 
the edges, especially in the near-throat region are due to the high $-values computed 
by the direct solver and associated with the local wall curvature. Part of the discrepancy 
is also due to the singular behaviour of the edge streamlines. 

The streamwise distribution of the Mach number along the central streamline 
calculated with the inverse and direct methods is presented in figure 9. The Mach 
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FIGURE 9. Mach number distributions of inverse (-) and direct (----) method along the 
centreline of the axial 3-D converging-diverging nozzle. 

FIGURE 10. Mach number contours of inverse (-) and direct (----) method on the half of the 
central $ = const. and r/ = const. stream surfaces of the axial 3-D converging-diverging nozzle 
(Mm6n = 0.20, AM = 0.05). 
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number contours on the half of the central @ = const. and 7 = const. stream surfaces 
of the inverse and direct solvers are compared in figure 10. The agreement is very good, 
indicating the reliability of the present method. 

6. Conclusions 
In the companion paper (Part 1) it was shown that the 3-D inverse potential target 

pressure problem can be formulated in terms of a potential function and two 
orthogonal stream functions, which are used as the independent variables (natural 
coordinates), and the velocity magnitude and the elementary streamtube aspect 
ratio which are considered to be the dependent variables. The numerical procedure 
developed for the solution of the 3-D inverse problem is presented and discussed. 

An elliptic-type p.d.e. for the velocity magnitude and a second-order 0.d.e. for the 
streamtube aspect ratio constitute the novel governing equations for the flow field. 
These equations are discretized using centred finite differencing on a staggered 
computational stencil, which increases the accuracy of the discretization in the near- 
boundary regions. The system of discrete equations is linearized and solved in a 
coupled manner employing an efficient preconditioned restarting GMRES(m) 
algorithm. 

The geometry is determined after the flow solution is found, by integrating Frenet 
equations along the natural-coordinate grid lines. Frenet equations which form a 
coupled system of 0.d.e.s for the covariant base are integrated using a Grank-Nicolson- 
type second-order-accurate space marching scheme. 

The inverse method is validated for two internal flow reproduction test cases, 
concerning a double turning converging duct and an axial 3-D converging-diverging 
nozzle. The very good agreement between direct and inverse solver results indicates the 
reliability of the novel 3-D inverse method proposed. 

This work was financed by the DG XI1 of the European Economic Community in 
the context of the BRITE-EURAM AERO-0026-C(TT) ‘Optimum Design in 
Aerodynamics ’ Project. 

REFERENCES 

CHAVIAROPOULOS, P., DEDOUSSIS, V. & PAPAILIOU, K. D. 1995 On the 3-D inverse potential target 
pressure problem. Part 1. Theoretical aspects and method formulation. J.  Fluid Mech. 282, 

CHAVIAROPOULOS, P., GIANNAKOGLOU, K. & PAPAILIOU, K. D. 1988 A novel scalar-vector potential 
formulation for the numerical solution of 3D steady inviscid rotational flow problems. AIAA J .  
26, 1734-1 739. 

GIANNAKOGLOU, K., CHAVIAROPOULOS, P. & PAPAILIOU, K. D. 1988 Acceleration of standard full- 
potential and elliptic Euler solvers using preconditioned generalized minimal residual techniques. 
In Flows in Non-rotating Turbomachinery Components (ed. U. S .  Rohatgi, A. Hamed & J. H. 
Kim). A S M E  FED Vol. 69, pp. 45-52. 

RAO, K. V., STEGER, J. L. & PLETCHER, R. H. 1987 A three-dimensional dual potential procedure for 
inlets and indraft wind tunnels. AIAA Paper 87-0598. 

SAAD, Y. & SCHULTZ, M. M. 1983 GMRES: A generalized minimal residual algorithm for solving 
nonsymmetric linear systems. Department of Computer Science, Yale University Rep. 

STANITZ, J. D. 1980 General design method for three-dimensional potential flow fields. I-Theory. 

131-146. 

YALEU/DCS/RR-254. 

NASA C R  3288. 



162 V .  Dedoussis, P .  Chaviaropoulos and K.  D .  Papailiou 

STANITZ, J. D.  1985 General design method for three-dimensional potential flow fields. 11-Computer 

YIH, C. S. 1957 Stream functions in three-dimensional flows. Houille Blanche 12, 445450. 
ZEDAN, M. & SCHNEIDER, G. E. 1983 A three-dimensional modified strongly implicit procedure for 

program DIN3D1 for simple unbranched ducts. NASA CR 3926. 

heat conduction. AZAA J .  21, 295-303. 


